Math Message:

1. \(3 \times 3 = 9\)
2. \(3 + 3 = 6\)
3. \(4 \times 4 = 16\)
4. \(4 + 4 = 8\)
5. \(5 \times 5 = 25\)
6. \(5 + 5 = 10\)
7. \(10 \times 10 = 100\)
8. \(10 + 10 = 20\)

Squaring Numbers

OBJ: Introduce square numbers and exponents

Numbers that can be represented by square arrays are called square numbers.

The *raised* 2 is called an **exponent**.

Numbers written with an exponent are said to be in **exponential notation**.

Exponential Notation:

\[
4^2 \quad 5^2 \quad 8^2 \quad 10^2
\]

- \(4 \times 4 = 16\)
- \(4 \text{ squared} = 4 \text{ to the second power}\)

\[
5 \times 5 = 25
\]

\[
8 \times 8 = 64
\]
Math Journals page 20

1. \(5 \times 5 = 25\)
 \(5^2 = 5 \times 5 = 25\)
 \(4 \times 4 = 16\)
 \(3 \times 3 = 9\)

2. Square numbers
 \(10 \times 10 = 10^2 = 100\)
 \(9 \times 9 = 9^2 = 81\)
 \(8 \times 8 = 8^2 = 64\)
 \(7 \times 7 = 7^2 = 49\)
 \(6 \times 6 = 6^2 = 36\)
 \(5 \times 5 = 5^2 = 25\)
 \(4 \times 4 = 4^2 = 16\)
 \(3 \times 3 = 9\)
 \(2 \times 2 = 4\)
 \(1 \times 1 = 1\)

prime? 1 is self
\(5 \times 5 = 25\)
\(25 \times 1 = 25\)
\(16\)
\(4, 8, 2, 1, 16\)

Math Journals page 21
Skyline of Squares

Directions:

Place square arrays in size order, starting with the largest square array on the bottom in order to build your square scraper!

On each square array, write the exponential notation and the numeric equation. (See example)

<table>
<thead>
<tr>
<th>Product</th>
<th>Exponential Notation</th>
<th>Square Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 4</td>
<td>4²</td>
<td>16</td>
</tr>
<tr>
<td>7 x 7</td>
<td>7²</td>
<td>49</td>
</tr>
<tr>
<td>10 x 10</td>
<td>10²</td>
<td>100</td>
</tr>
<tr>
<td>11 x 11</td>
<td>11²</td>
<td>121</td>
</tr>
</tbody>
</table>

\[3^2\]